Add like
Add dislike
Add to saved papers

Prediction of adenocarcinoma development using game theory.

Recent research shows that gene expression changes appear to correlate well with the progression of many types of cancers. Using changes in gene expression as a basis, this paper proposes a data-driven 2-player game-theoretic model to predict the risk of adenocarcinoma based on Nash equilibrium. A key innovation in this work is the pay-off function which is a weighted composite of the expression of a cohort of tumor-suppressor genes (as one player) and an analogous cohort of oncogenes (as the other player). Another novelty of the model is its ability to predict the risk that a healthy sample will develop adenocarcinoma, if its associated gene expression is comparable to that of early-stage tumor samples. The model is validated using two of the largest publicly available adenocarcinoma datasets. The results show that i) the model is able to distinguish between healthy and cancerous samples with an accuracy of 93%, and ii) 95% of the healthy samples said to be at risk had gene expressions comparable to those of samples with stage I or stage II tumors, thereby predicting the imminent onset of adenocarcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app