Add like
Add dislike
Add to saved papers

Nanostructured platinum as an electrochemically and mechanically stable electrode coating.

Nanostructured materials exhibit large electrochemical surface areas and are thus of high interest for neural interfaces where low impedance and high charge transfer characteristics are desired. While progress in nanotechnology successively enabled smaller feature sizes and thus improved electrochemical properties, concerns were raised with respect to the mechanical stability of such nano structures for use in neural applications. In our study we address these concerns by investigating the mechanical and electrochemical stability of nanostructured platinum. Neural probes with nano-Pt were exposed to exaggerated stress tests resembling insertion into neural tissue over 60 mm distance or long-term stimulation over 240 M biphasic current pulses. Thereby only insignificant changes in electrochemical properties and morphological appearance could be observed in response to the test, proving that nanostructured platinum exhibits outstanding stability. With this finding, a major concern in using nanostructured materials for interfacing neural tissue could be eliminated, demonstrating the high potential of nanostructured platinum for neuroprosthetic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app