Add like
Add dislike
Add to saved papers

Development and validation of a high-performance liquid chromatography-tandem mass spectrometry assay for the quantification of Dexamphetamine in human plasma.

Dexamphetamine is registered for the treatment of attention deficit hyperactivity disorder and narcolepsy. Current research has highlighted the possible application of dexamphetamine in the treatment of cocaine addiction. To support clinical pharmacologic trials a new simple, fast, and sensitive assay for the quantification of dexamphetamine in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. Additionally, it is the first reported LC-MS assay with these advantages to be fully validated according to current US FDA and EMA guidelines. Human plasma samples were collected on an outpatient basis and stored at nominally -20°C. The analyte and the internal standard (stable isotopically labeled dexamphetamine) were extracted using double liquid-liquid extraction (plasma-organic and organic-water) combined with snap-freezing. The aqueous extract was filtered and 2μL was injected on a C18-column with isocratic elution and analyzed with triple quadrupole mass spectrometry in positive ion mode. The validated concentration range was from 2.5-250ng/mL and the calibration model was linear. A weighting factor of 1 over the squared concentration was applied and correlation coefficients of 0.997 or better were obtained. At all concentrations the bias was within ±15% of the nominal concentrations and imprecision was ≤15%. All results were within the acceptance criteria of the latest US FDA guidance and EMA guidelines on method validation. In conclusion, the developed method to quantify dexamphetamine in human plasma was fit to support a clinical study with slow-release dexamphetamine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app