Add like
Add dislike
Add to saved papers

CTGF Is Expressed During Cystic Remodeling in the PKD/Mhm (cy/+) Rat Model for Autosomal-Dominant Polycystic Kidney Disease (ADPKD).

Connective tissue growth factor (CTGF, also named CCN2) plays an important role in the development of tubulointerstitial fibrosis, which most critically determines the progression to end-stage renal failure in autosomal-dominant polycystic kidney disease (ADPKD), the most common genetically caused renal disease. We determined CTGF expression in a well-characterized animal model of human ADPKD, the PKD/Mhm (cy/+) rat. Kidneys of 12 weeks old (cy/+) as well as (+/+) non-affected rats were analyzed for CTGF RNA and protein expression by RT-PCR, Northern and Western blot analyses, in situ hybridization, and IHC. Besides the established expression of CTGF in glomerular cells in kidneys of wild-type (+/+) animals, in (cy/+) rats, CTGF mRNA and protein were robustly expressed in interstitial, stellate-shaped cells, located in a scattered pattern underlying the cystic epithelium and in focal areas of advanced tubulointerstitial remodeling. Renal CTGF mRNA and protein expression levels were significantly higher in (cy/+) rats compared with their (+/+) littermates. Detection of CTGF expression in cells adjacent to cystic epithelium and in areas of marked fibrosis suggests a role in the local response to cyst development and indicates that CTGF may be a relevant factor contributing to tubulointerstitial fibrosis in polycystic kidney disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app