Add like
Add dislike
Add to saved papers

Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues.

Nature Genetics 2017 December
Genetic association mapping produces statistical links between phenotypes and genomic regions, but identifying causal variants remains difficult. Whole-genome sequencing (WGS) can help by providing complete knowledge of all genetic variants, but it is financially prohibitive for well-powered GWAS studies. We performed mapping of expression quantitative trait loci (eQTLs) with WGS and RNA-seq, and found that lead eQTL variants called with WGS were more likely to be causal. Through simulations, we derived properties of causal variants and used them to develop a method for identifying likely causal SNPs. We estimated that 25-70% of causal variants were located in open-chromatin regions, depending on the tissue and experiment. Finally, we identified a set of high-confidence causal variants and showed that these were more enriched in GWAS associations than other eQTLs. Of those, we found 65 associations with GWAS traits and provide examples in which genes implicated by expression are functionally validated as being relevant for complex traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app