Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reversible Redox Switching of Chromophoric Phenylmethylenepyrans by Carbon-Carbon Bond Making/Breaking.

Electrochromic organic systems that can undergo substantial variation of their optical properties upon electron stimulus are of high interest for the development of functional materials. In particular, devices based on radical dimerization are appropriate because of the effectiveness and speed of carbon-carbon bond making/breaking. Phenylmethylenepyrans are organic chromophores which are well suited for such purposes since their oxidation leads to the reversible formation of bispyrylium species by radical dimerization. In this paper, we show that the redox and spectroscopic properties of phenylmethylenepyrans can be modulated by adequate variation of the substituting group on the para position of the phenyl moiety, as supported by DFT calculations. This redox switching is reversible over several cycles and is accompanied by a significant modification of the UV-vis spectrum of the chromophore, as shown by time-resolved spectroelectrochemistry in thin-layer conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app