Add like
Add dislike
Add to saved papers

Invasion pinning in a periodically fragmented habitat.

Biological invasions can cause great damage to existing ecosystems around the world. Most landscapes in which such invasions occur are heterogeneous. To evaluate possible management options, we need to understand the interplay between local growth conditions and individual movement behaviour. In this paper, we present a geometric approach to studying pinning or blocking of a bistable travelling wave, using ideas from the theory of symmetric dynamical systems. These ideas are exploited to make quantitative predictions about how spatial heterogeneities in dispersal and/or reproduction rates contribute to halting biological invasion fronts in reaction-diffusion models with an Allee effect. Our theoretical predictions are confirmed using numerical simulations, and their ecological implications are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app