Add like
Add dislike
Add to saved papers

Electrodeposition of tin on Nafion-bonded carbon black as an active catalyst layer for efficient electroreduction of CO 2 to formic acid.

Scientific Reports 2017 October 21
Electroreduction of CO2 to formic acid (ERCF) based on gas diffusion electrodes (GDEs) has been considered as a promising method to convert CO2 into value-added chemicals. However, current GDEs for ERCF suffer from low efficiency of electron transfer. In this work, a novel Sn-based gas diffusion electrode (ESGDE) is prepared by electrodepositing Sn on Nafion-bonded carbon black as catalyst layer to enhance electron transfer and thus the efficiency of ERCF. The highest Faraday efficiency (73.01 ± 3.42%), current density (34.21 ± 1.14 mA cm-2 ) and production rate (1772.81 ± 59.08 μmol m-2 s-1 ) of formic acid are obtained by using the ESGDE with electrodeposition time of 90 s in 0.5 M KHCO3 solution, which are one of the highest values obtained from Sn-based gas diffusion electrodes under similar conditions. The notable efficiency of ERCF achieved here should be attributed to the enhancement in the reactants transfer as well as the three-dimensional reaction zone. This work will be helpful for the industrial application of GDEs in EFCF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app