Add like
Add dislike
Add to saved papers

Challenging FRET-based E-Cadherin force measurements in Drosophila.

Scientific Reports 2017 October 21
Mechanical forces play a critical role during embryonic development. Cellular and tissue wide forces direct cell migration, drive tissue morphogenesis and regulate organ growth. Despite the relevance of mechanics for these processes, our knowledge of the dynamics of mechanical forces in living tissues remains scarce. Recent studies have tried to address this problem with the development of tension sensors based on Förster resonance energy transfer (FRET). These sensors are integrated into force bearing proteins and allow the measurement of mechanical tensions on subcellular structures. Here, we developed such a FRET-based sensor to measure E-Cadherin tensions in different Drosophila tissues in and ex vivo. Similar to previous studies, we integrated the sensor module into E-cadherin. We assessed the sensitivity of the sensor by measuring dynamic, developmental processes and mechanical modifications in three Drosophila tissues: the wing imaginal disc, the amnioserosa cells and the migrating border cells. However, these assays revealed that the sensor is not functional to measure the magnitude of tensions occurring in any of the three tissues. Moreover, we encountered technical problems with the measurement of FRET, which might represent more general pitfalls with FRET sensors in living tissues. These insights will help future studies to better design and control mechano-sensing experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app