Add like
Add dislike
Add to saved papers

Optimisation of chloroquine phosphate loaded nanostructured lipid carriers using Box-Behnken design and its antimalarial efficacy.

Chloroquine was once the most widely used antimalarial for nearly eight decades for its safety, efficiency, stability, low cost and finally for its less toxic nature. But its use and efficacy got slowly decreased with the increase of chloroquine resistant strains of Plasmodium species throughout the world. Lipid based nanodrug delivery systems have been very popular in the recent times as they are very less toxic, have drug targeting capabilities and also reduces the dosing frequency by increasing efficacy of the drug. In the present research work, response surface methodology was employed to optimise chloroquine phosphate (CQ) loaded nanostructured lipid carriers (NLCs) using a modified double emulsion technique. The optimised CQ loaded NLC showed a particle size of 66.50 ± 1.21 nm, PDI of 0.210 ± 0.016, ZP of +38.4 ± 1.44 and EE of 78.2 ± 1.2%, respectively. The in vitro and in vivo antimalarial studies of CQ loaded NLCs showed an enhanced antimalarial efficacy of the nanoformulation with a better suppression of parasitemia and with an increased efficacy of more than 23% in comparison to pure drug. This study demonstrated that by loading a drug into an NLCs system can help in overcoming the problems associated with the present antimalarials available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app