Add like
Add dislike
Add to saved papers

Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library.

Science Advances 2017 October
Cell cycle progression is a tightly controlled fundamental process in living cells, with any defects being closely linked to various abnormalities. The tumor suppressor p53/p21 axis is a core pathway controlling cell cycle progression; however, its regulatory mechanism has not been fully elucidated. In an effort to unravel this crucial network, we screened a short hairpin RNA expression vector library and identified unspliced X-box binding protein 1 (XBP1-u) as a novel and critical regulator of the p53/p21 axis. Specifically, XBP1-u negatively regulates the p53/p21 axis by enhancing p53 ubiquitination, which in turn down-regulates p21 expression. We show that XBP1-u suppression induces G0 -G1 phase arrest and represses cell proliferation. We further report that the carboxyl terminus of XBP1-u, which differs from that of its spliced form (XBP1-s) due to a codon shift, binds and stabilizes mouse double minute homolog 2 (MDM2) protein, a negative regulator of p53, by inhibiting its self-ubiquitination. Concomitantly, XBP-u overexpression enhances tumorigenesis by positively regulating MDM2. Together, our findings suggest that XBP1-u functions far beyond being merely a precursor of XBP1-s and, instead, is involved in fundamental biological processes. Furthermore, this study provides new insights regarding the regulation of the MDM2/p53/p21 axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app