Add like
Add dislike
Add to saved papers

Integrating Quantum Dots and Dielectric Mie Resonators: A Hierarchical Metamaterial Inheriting the Best of Both.

ACS Photonics 2017 September 21
Nanoscale dielectric resonators and quantum-confined semiconductors have enabled unprecedented control over light absorption and excited charges, respectively. In this work, we embed luminescent silicon nanocrystals (Si-NCs) into a 2D array of SiO2 nanocylinders and experimentally prove a powerful concept: the resulting metamaterial preserves the radiative properties of the Si-NCs and inherits the spectrally selective absorption properties of the nanocylinders. This hierarchical approach provides increased photoluminescence (PL) intensity obtained without utilizing any lossy plasmonic components. We perform rigorous calculations and predict that a freestanding metamaterial enables tunable absorption peaks up to 50% in the visible spectrum, in correspondence with the nanocylinder Mie resonances and of the grating condition in the array. We experimentally detect extinction spectral peaks in the metamaterial, which drive enhanced absorption in the Si-NCs. Consequently, the metamaterial features increased PL intensity, obtained without affecting the PL lifetime, angular pattern, and extraction efficiency. Remarkably, our best-performing metamaterial shows +30% PL intensity achieved with a lower amount of Si-NCs, compared to an equivalent planar film without nanocylinders, resulting in a 3-fold average PL enhancement per Si-NC. The principle demonstrated here is general, and the Si-NCs can be replaced with other semiconductor quantum dots, rare-earth ions, or organic molecules. Similarly, the dielectric medium can be adjusted on purpose. This spectral selectivity of absorption paves the way for an effective light down-conversion scheme to increase the efficiency of solar cells. We envision the use of this hierarchical design for other efficient photovoltaic, photocatalytic, and artificial photosynthetic devices with spectrally selective absorption and enhanced efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app