Add like
Add dislike
Add to saved papers

Cortical responses to shape-from-motion stimuli in the infant.

Neurophotonics 2018 January
Our ability to extract three-dimensional (3-D) object structure from motion-carried information is a basic visual capacity that is fundamental to object perception. Despite a rich body of behavioral work demonstrating that infants are sensitive to motion-carried information from the early months of life, little is known about the cortical networks that support infants' use of motion-carried information to extract 3-D object structure. This study assessed patterns of cortical activation in infants aged 4 to 6 months as they viewed two types of visual stimuli: (a) shape-from-motion (SFM) displays, where coherent motion of randomly distributed dots gave rise to the percept of 3-D shape and (b) random motion (RM) displays, where dots' motions lacked a coherent structure and gave rise to the percept of randomly moving dots. Functional near-infrared spectroscopy was used to assess activation in occipital, inferior parietal, and posterior temporal cortex. The optical imaging data revealed differential responding to SFM and RM in lower level object processing areas than typically observed in the adult. Possible explanations for this pattern of results are considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app