Journal Article
Review
Add like
Add dislike
Add to saved papers

Circulating DNA in EGFR -mutated lung cancer.

Circulating tumor DNA (ctDNA) consists of short double stranded DNA fragments that are released by tumors including non-small cell lung cancer (NSCLC). With the identification of driver mutations in the epidermal growth factor receptor ( EGFR ) gene and development of targeted tyrosine kinase inhibitors (TKIs), the clinical outcome of NSCLC patients in this subgroup has improved tremendously. The gold standard to assess EGFR mutation is through tissue biopsy, which can be limited by difficulty in accessing the tumor, inability of patients to tolerate invasive procedures, insufficient sample for molecular testing and inability to capture intratumoral heterogeneity. The great need for rapid and accurate identification of activating EGFR mutations in NSCLC patients paves the road for ctDNA technology. Studies have demonstrated ctDNA to be a reliable complement to tumor genotyping. Platforms like digital polymerase chain reaction (PCR) and next-generation sequencing based analyses have made it possible to identify EGFR mutations in plasma with high sensitivity and specificity. This article will provide an overview on ctDNA in the context of EGFR mutated NSCLC, especially its emerging applications in diagnosis, disease surveillance, treatment monitoring and detection of resistance mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app