Add like
Add dislike
Add to saved papers

Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake.

Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate ([Formula: see text]) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2 ) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2 O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZ I and nosZ II genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZ I gene as a molecular marker. In addition to genera Polymorphum , Paracoccus , Azospirillum , Pseudomonas , Hyphomicrobium , Thauera , and Methylophaga , which were present in the clone libraries, Arthrobacter , Burkholderia , and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2 O production and determined denitrifiers' community structure. All these results indicate that denitrification could be a major biochemical process responsible for the N losses that occur in La Caldera lake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app