Add like
Add dislike
Add to saved papers

Cryoconites from Alpine glaciers: Radionuclide accumulation and age estimation with Pu and Cs isotopes and 210 Pb.

Cryoconites ("cold dust", derived from the Greek) are aeolian sediments accumulated on glacier surfaces. In cryoconites from the surface of the Stubacher Sonnblickkees, a temperate Austrian glacier, extremely high activity concentrations of artificial and natural radionuclides were found. Artificial radionuclides stem from two clearly distinguishable sources, global fallout from the nuclear weapons testing era deposited over a period of years until roughly 1966 and the fallout from Chernobyl in 1986, which was essentially deposited as a single input during one week. Anthropogenic radionuclides identified were 137 Cs, 134 Cs, 238 Pu, 239+240 Pu, 90 Sr, 241 Am, 60 Co, 125 Sb, 154 Eu, and 207 Bi. The naturally occurring radionuclides detected were the long-lived radon decay product 210 Pb, the primordial radionuclide 4  K and the cosmogenic 7 Be. Isotopic ratios of 134 Cs/137 Cs and 239+240 Pu/238 Pu were used to separate the nuclide inventory into the contributions of the two aforementioned sources, which show varying degrees of mixing and provide information on the mixing age of the cryoconites. Since isotopic ratios of Pu often have high uncertainties due to low absolute concentrations, age estimation based on this method can be quite inaccurate. Additional information about the age of cryoconites was obtained through analysis of 210 Pb, which is constantly deposited over time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app