JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Spindle Assembly Checkpoint Is Required for Hematopoietic Progenitor Cell Engraftment.

Stem Cell Reports 2017 November 15
The spindle assembly checkpoint plays a pivotal role in preventing aneuploidy and transformation. Many studies demonstrate impairment of this checkpoint in cancer cells. While leukemia is frequently driven by transformed hematopoietic stem and progenitor cells (HSPCs), the biology of the spindle assembly checkpoint in such primary cells is not very well understood. Here, we reveal that the checkpoint is fully functional in murine progenitor cells and, to a lesser extent, in hematopoietic stem cells. We show that HSPCs arrest at prometaphase and induce p53-dependent apoptosis upon prolonged treatment with anti-mitotic drugs. Moreover, the checkpoint can be chemically and genetically abrogated, leading to premature exit from mitosis, subsequent enforced G1 arrest, and enhanced levels of chromosomal damage. We finally demonstrate that, upon checkpoint abrogation in HSPCs, hematopoiesis is impaired, manifested by loss of differentiation potential and engraftment ability, indicating a critical role of this checkpoint in HSPCs and hematopoiesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app