Add like
Add dislike
Add to saved papers

Nitrogen removal by thiosulfate-driven denitrification and plant uptake in enhanced floating treatment wetland.

This study investigated the potential of thiosulfate-driven autotrophic enhanced floating treatment wetland (AEFTW) in removing nitrogen from the secondary effluent at the relatively short hydraulic retention times and low S/N ratios. Simultaneous autotrophic and heterotrophic denitrification was observed in AEFTW. The peak TN removal rate (15.3gm-2 d-1 ) exceeded most of the reported floating treatment wetlands. Based on the kinetic model results, low mean temperature coefficient and high k20 verified that the excellent performance in AEFTW diminished the microbial dependence on temperature. Nitrogen removal performance of enhanced floating treatment wetland (EFTW) and floating treatment wetland (FTW) were similar and highly sensitive to temperature. The interaction of sulfur transformation on the nitrogen, carbon uptake of plants was studied. Thiosulfate addition significantly raised sulfur content in the shoots and further enhanced the uptake of nitrogen and carbon, and increased the plant biomass at the same time. Higher composition of autotrophic and heterotrophic denitrifiers in AEFTW interpreted the occurrence of mixotrophic denitrification during summer. Thiosulfate induced mutual promotion of nitrogen removal by plant uptake and microbial denitrification in AEFTW.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app