Add like
Add dislike
Add to saved papers

The N-Acylethanolamine Acid Amidase Inhibitor ARN077 Suppresses Inflammation and Pruritus in a Mouse Model of Allergic Dermatitis.

N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase highly expressed in macrophages and B lymphocytes, catalyzes the degradation of palmitoylethanolamide. Palmitoylethanolamide is an agonist of PPAR-α and an important regulator of pain and innate immunity. In this study, we investigated the properties of the NAAA inhibitor, ARN077, in a mouse model of allergic contact dermatitis. Acute topical applications of ARN077 attenuated key signs of DNFB-induced dermatitis in a dose-dependent manner. Moreover, ARN077 increased tissue palmitoylethanolamide content and normalized circulating levels of cytokines and immunoglobulin E. No such effect was seen in PPAR-α-deficient mice. Moreover, mice lacking NAAA failed to develop edema or scratching behavior after challenge with DNFB, confirming that this enzyme plays an important role in dermatitis. Consistent with this conclusion, subchronic applications of ARN077 suppressed DNFB-induced inflammation when administered either before or after the DNFB challenge. The effects of subchronic ARN077 were dose dependent and comparable in size to those produced by the steroids clobetasol and dexamethasone. Unlike the latter, however, ARN077 did not cause skin atrophy. The results identify NAAA as a promising target for the development of effective and safe treatments for atopic dermatitis and other inflammatory disorders of the skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app