JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dual expression of constitutively active Gα s -protein-coupled receptors differentially establishes the resting activity of the cAMP-gated HCN2 channel in a single compartment.

The hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) channel is a major subtype of the HCN channel family expressed in the nervous system that sets the membrane potential, regulates cell excitability and senses changes in the extracellular environment. Neurons express various Gαs -protein-coupled receptors (GPCRs), many of which show ligand-independent constitutive activity. These membrane-bound proteins are expressed in various subcellular compartments of neurons. Therefore, some proportion of HCN2 channels opens in response to the basal cAMP pool size produced by constitutively active GPCRs. Here, we employed an exogenous HEK293 expression system and voltage-clamp patch-clamp recordings to investigate basal HCN2 channel activity in the presence of two GPCRs with diverse basal activities in a single compartment. We utilized the β2-adrenoceptor (β2AR) together with odorant receptors (ORs), as both GPCR families are known to show strong basal activity. Consequently, β2AR alone strongly enhanced the activity of HCN2 channels, and co-expression of ORs further diversified the HCN2 channel activity, which was totally abolished by an adenylate cyclase inhibitor. Thus, we conclude that the dual expression of constitutively active GPCRs establishes the diverse range of the basal cAMP pool size in resting cells through mutual additive or suppressive interactions, even in the absence of external stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app