Add like
Add dislike
Add to saved papers

Force estimation in fatigue condition using a muscle-twitch model during isometric finger contraction.

We propose a force estimation method in fatigue condition using a muscle-twitch model and surface electromyography (sEMG). The twitch model, which is an estimate of force by a single spike, was obtained from sEMG features and measured forces. Nine healthy subjects performed isometric index finger abduction until exhaustion for a series of dynamic contractions (0-20% MVC) to characterize the twitch model and static contractions (50% MVC) to induce muscle fatigue. Muscle fatigue was identified based on the changes of twitch model; the twitch peak decreased and the contraction time increased as muscle fatigue developed. Force estimation performance in non-fatigue and fatigue conditions was evaluated and its results were compared with that of a conventional method using the mean absolute value (MAV). In non-fatigue conditions, the performance of the proposed method (0.90 ± 0.05) and the MAV method (0.88 ± 0.06) were comparable. In fatigue conditions, the performance was significantly improved for the proposed method (0.87 ± 0.05) compared with the MAV (0.78 ± 0.09).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app