Add like
Add dislike
Add to saved papers

Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva.

Enzymes 2017
Exosomes are small membrane vesicles of endocytic origin that are secreted by most cells and detected in saliva. Pathophysiological roles for salivary exosomes are beginning to be recognized in diseases including cancer, highlighting potential biomarkers and biological functions. Since early detection of cancer is vital for successful treatment, salivary exosomes would be advantageous in achieving a better survival rate due to their ready availability and noninvasiveness. The use of salivary exosomes may therefore be promising in the accurate detection of premalignant lesions and early-stage cancers, also for better our understanding of the molecular basis of tumorigenesis. In this chapter, we review our current knowledge of salivaomics, focusing on nucleic acids and proteins in saliva as potential cancer biomarkers. Since salivaomics is a rapidly evolving field, we hope to expand frameworks toward salivary exosomes, integrate new and existing information, and bridge salivaomics with other biomedical researches. Furthermore, we would like to coin the term "saliva-exosomics" as the next-generation salivaomics. Our goal in this chapter is to provide the most updated information on cancer-derived exosomes in the saliva as natural carriers of biomarkers and signaling molecules. Major advances include definitive structure analysis and molecular characterization of salivary exosomes. We also highlight the exosome biogenesis and cargo trafficking mechanisms in which recent animal studies have expanded our understanding of exosome-mediated transfer of cancer-derived products from distal tumor to salivary gland. The potential roles of the salivary exosomes in cancer progression and immune surveillance are also addressed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app