Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reversible mono-ADP-ribosylation of DNA breaks.

FEBS Journal 2017 December
Adenosine diphosphate (ADP)-ribosylation is a chemical modification of macromolecules that plays an important role in regulation of quintessential biological processes such as DNA repair, transcription, chromatin remodelling, stress response, apoptosis, bacterial metabolism and many others. ADP-ribosylation is carried out by ADP-ribosyltransferase proteins, such as poly (ADP-ribose) polymerases (PARPs) that transfer either monomer or polymers of ADP-ribose onto the molecular targets by using nicotinamide adenine dinucleotide (NAD+ ) as a cofactor. Traditionally, proteins have been described as primary targets of ADP-ribosylation; however, there has been growing evidence that DNA may be a common target as well. Here, we show using biochemical studies that PARP3, a DNA damage-activated ADP-ribosyltransferase, can mono-ADP-ribosylate double-stranded DNA ends. ADP-ribosylation of DNA mediated by PARP3 attaches a single mono-ADP-ribose moiety to the phosphate group at the terminal ends of DNA. We further show that mono ADP-ribosylation at DNA ends can be efficiently reversed by several cellular hydrolases (PARG, MACROD2, TARG1 and ARH3). This suggests that mono ADP-ribosylated DNA adducts can be efficiently removed in cells by several mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app