Add like
Add dislike
Add to saved papers

PERK-Phosphorylated eIF2α Pathway Suppresses Tumor Metastasis Through Downregulating Expression of Programmed Death Ligand 1 and CXCL5 in Triple-Negative Breast Cancer.

Endoplasmic reticulum (ER) stress has been reported to be associated with metastasis in many malignant tumors. PKR-like ER kinase-phosphorylated eukaryotic translation initiation factor 2α (PERK-p-eIF2α) pathway is one of the three main signal pathways in ER stress, however, its mechanism in regulating breast cancer (BC) relapse or metastasis was still not completely understood. Besides, drug resistance was an important factor influencing the effect of tumor treatment and whether PERK-p-eIF2α pathway was involved in the drug resistance to BC treatment also needs to be explored. The authors conducted survival analysis of ER stress-related genes in the The Cancer Genome Atlas (TCGA) database to find the candidate molecule and found that eIF2α was significantly correlated with relapse-free survival in BC patients, especially in the triple-negative BC (TNBC) patients. Furthermore, BC cell lines were used to study the downstream target of PERK-p-eIF2α. In this study, p-eIF2α could negatively regulate the expression of programmed death ligand 1 (PDL1) and C-X-C motif chemokine ligand 5 (CXCL5), which were important ligands of the immune cells such as T cells and myeloid-derived suppressor cells in the tumor microenvironment. Besides, p-eIF2α expression in highly metastatic human TNBC cells after treatment of carboplatin was significantly decreased. The data indicated the possible novel immune-related mechanism of PERK-p-eIF2α in regulating TNBC metastasis and drug resistance of carboplatin in highly metastatic TNBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app