Add like
Add dislike
Add to saved papers

Inducing and Manipulating Heteroelectronic States in a Single MoS_{2} Thin Flake.

By dual gating a few-layer MoS_{2} flake, we induce spatially separated electronic states showing superconductivity and Shubnikov-de Haas (SdH) oscillations. While the highly confined superconductivity forms at the K/K^{'} valleys of the topmost layer, the SdH oscillations are contributed by the electrons residing in the Q/Q^{'} valleys of the rest of the bottom layers, which is confirmed by the extracted Landau level degeneracy of 3, electron effective mass of 0.6m_{e}, and carrier density of 5×10^{12}  cm^{-2}. Mimicking conventional heterostructures, the interaction between the heteroelectronic states can be electrically manipulated, which enables "bipolarlike" superconducting transistor operation. The off-on-off switching pattern can be continuously accessed at low temperatures by a field effect depletion of carriers with a negative back gate bias and the proximity effect between the top superconducting layer and the bottom metallic layers that quenches the superconductivity at a positive back gate bias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app