Add like
Add dislike
Add to saved papers

Population density analysis for determining the protonation state of the catalytic dyad in BACE1-Tertiary Carbinamine based Inhibitor complex.

BACE1 is an aspartyl protease with a very relevant role in medicinal chemistry related to Alzheimer Disease since it has demonstrated to be a promising therapeutic target for inhibition and possible control for the progress of the peptide accumulation characteristic of this pathology. The enzymatic activity of this protein is given by the aspartic dyad, Asp93 and Asp289, which can adopt several protonation states depending on the chemical nature of its inhibitors, this is, monoprotonated, diprotonated and di-deprotonated states. In the present study, the analysis of the population density, for a series of protein-inhibitor molecular dynamics simulations, was carried out to identify the most feasible protonation state adopted by the catalytic dyad in the presence of tertiary carbinamine (TC) transition state analogue inhibitors. The results revealed that the monoprotonated Asp289i state, in which the Asp93 and Asp289 residue side chains are deprotonated and protonated on the inner oxygen respectively, is the most preferred in the presence of TC family inhibitors. This result was obtained after evaluating, for all 9 possible protonation state configurations, the individual and combined population densities of a set of parameters sensitive to protonation state of the Aspartic dyad, using an X-ray experimental BACE1/TC crystallographic structure as reference. This case study demonstrates again the usefulness of the concept of population density as a quantitative tool to establish the most stable system settings, among all possible, by measuring the level of occurrence of simultaneous events obtained from a sampling over time. These results will help to clear the phenomena related to the TCs inhibitory pathway, as well as assist in the design of better TC inhibitors against Alzheimer's protease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app