Add like
Add dislike
Add to saved papers

Effect of functionalized PHEMA micro- and nano-particles on the viscoelastic properties of fibrin-agarose biomaterials.

Two types of PHEMA-based particles, exhibiting either carboxyl or tertiary ammine functional groups, were incorporated to fibrin-agarose (FA) hydrogels, and the effect of the addition of these synthetic particles on the viscoelastic and microstructural properties of the biomaterials was evaluated. Experimental results indicated that the incorporation of both types of polymeric particles to FA scaffolds was able to improve the biomechanical properties of the biomaterials under steady state and oscillatory shear stresses, resulting in scaffolds characterized by higher values of the storage, loss, and shear moduli. In addition, the microstructural evaluation of the scaffolds showed that the nanoparticles exhibiting carboxyl functional groups were homogeneously distributed across the fibrous network of the hydrogels. The addition of both types of artificial polymeric particles was able to enhance the viscoelastic properties of the FA hydrogels, allowing the biomaterials to reach levels of mechanical consistency under shear stresses in the same range of some human native soft tissues, which could allow these biomaterials to be used as scaffolds for new tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 738-745, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app