Add like
Add dislike
Add to saved papers

The effect of divalent ions on L-α-phosphatidylcholine from egg yolk monolayers at the air/water interface.

The Langmuir monolayers of L-α-phosphatidylcholine from egg yolk were studied by Wilhelmy method. The surface pressure versus molecular area isotherm of lipid on pure water and different subphase (with a presence of divalent ions: Sr2+ , Cd2+ , Ba2+ , Pb2+ ) was obtained. The limiting area of the isotherms depends on the presence of subphase ions. The addition of divalent ions to the subphase stabilized the monolayers and increased the limiting areas of the monolayer. During the compression in monolayer complexes of 1:1 and 2:1 stoichiometry between L-α-phosphatidylcholine from egg yolk and divalent ions are formed. We used the equilibrium theory to describe the behavior of monolayer components at the air/water interface. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants and area occupied by one molecule of LMe2+ or L2 Me2+ complexes, and complex formation energy (Gibbs free energy) values. These mathematically derived and experimentally confirmed values are of great importance for the interpretation of phenomena occurring in lipid monolayers and bilayers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app