Add like
Add dislike
Add to saved papers

PARP-1 and p53 Regulate the Increased Susceptibility to Oxidative Death of Lymphocytes from MCI and AD Patients.

Mild cognitive impairment (MCI) is a clinically detectable initial stage of cognitive deterioration with a high conversion rate to dementia. There is increasing evidence that some of the cerebral alterations present in Alzheimer type dementia can be found in peripheral tissues. We have previously shown that lymphocytes from Alzheimer's disease (AD) patients have increased susceptibility to hydrogen peroxide (H2 O2 )-induced death that depends on dementia severity. We here investigated whether lymphocytes from MCI patients show increased vulnerability to death, and explored the involvement of Poly [ADP-ribose] polymerase (PARP-1) and p53 in the regulation of this process. Lymphocytes from 16 MCI and 10 AD patients, and 15 healthy controls (HCs) were submitted to increasing concentrations of H2 O2 for 20 h. Cell death was determined by flow cytometry, in the presence or absence of PARP-1 inhibitors (3-aminobenzamide (3-ABA) or Nicotinamide (NAM)), or the p53 inhibitor (nutlin-3) or stabilizer (pifithrin-α). PARP-1 and p53 mRNA levels were determined by quantitative PCR (qPCR). Lymphocytes from MCI patients showed increased susceptibility to death, attaining intermediate values between AD and controls. PARP inhibitors -3-ABA and NAM- markedly protected from H2 O2 -induced death, making the difference between MCI and controls disappear, but not the difference between AD and controls. PARP-1 mRNA expression was increased in MCI lymphocytes. Modulation of p53 with Nutlin-3 or pifithrin-α did not modify the H2 O2 -induced death of lymphocytes from MCI or AD patients, but augmented the death in control lymphocytes attaining levels similar to MCI and AD. Accordingly, p53 mRNA expression was increased in AD and MCI lymphocytes compared to controls. In all, these results show that increased oxidative death is present in lymphocytes at the MCI stage. PARP-1 has a preponderant role, with complete death protection achieved with PARP inhibition in MCI lymphocytes, but not in AD, suggesting that PARP-1 might have a protective role. In addition, deregulations of the p53 pathway seem to contribute to the H2 O2 -induced death in MCI and AD lymphocytes, which show increased p53 expression. The results showing a prominent protective role of PARP inhibitors opens the door to study the use of these agents to prevent oxidative death in MCI patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app