Add like
Add dislike
Add to saved papers

Vector-independent transmembrane transport of oligodeoxyribonucleotides involves p38 mitogen activated protein kinase phosphorylation.

Scientific Reports 2017 October 20
The main roles of equilibrative nucleoside transporters (ENTs) and concentrative nucleoside transporters (CNTs) are to transfer single nucleosides and analogues for the nucleic acid salvage pathway. Oligodeoxyribonucleotides (ODNs) can be transported into the cytoplasm or nucleus of cells under certain conditions. Among ODNs composed of a single type of nucleotide, the transport efficiency differs with the length and nucleotide composition of the ODNs and varies in different types of leukaemia cells; among the 5 tested random sequence ODNs and 3 aptamers with varying sequences, the data showed that some sequences were associated with significantly higher transport efficiency than others. The transport of ODNs was sodium, energy, and pH-independent, membrane protein-dependent, substrate nonspecific for ODNs and 4-nitrobenzylthioinosine (NBMPR)-insensitive, but it showed a low sensitivity to dipyridamole (IC50 = 35.44 µmol/L), distinguishing it from ENT1-4 and CNTs. The delivery efficiency of ODNs was superior to that of Lipofection and Nucleofection, demonstrating its potential applications in research or therapeutics. Moreover, this process was associated with p38 mitogen activated protein kinase (p38MAPK) instead of c-Jun N-terminal kinase (JNK) signalling pathways. We have denoted ODN transmembrane transport as equilibrative nucleic acid transport (ENAT). Overall, these findings indicate a new approach and mechanism for transmembrane transport of ODNs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app