Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanisms of resistance against NITD-916, a direct inhibitor of Mycobacterium tuberculosis InhA.

Tuberculosis 2017 December
Isoniazid inhibits Mycobacterium tuberculosis InhA and is a key component of drug regimens that treat tuberculosis. However, the high rate of resistance against isoniazid is a contributing factor to the emergence of multi-drug resistance strains of M. tuberculosis. The 4-hydroxy-2-pyridine NITD-916 is a direct inhibitor of M. tuberculosis InhA that has comparable efficacy to isoniazid in mouse models of TB infection but a lower frequency of resistance. To characterize resistance mechanisms against NITD-916 we isolated resistant mutants in H37Rv (Euro-American lineage) and HN878 (East-Asian lineage) strains of M. tuberculosis. The resistance frequency was similar in both strains. Mutations were identified in residues within or near to the active of InhA or in the fabG1inhA promoter region. All mutants were resistant to NITD-916 but were not cross resistant to isoniazid, despite homology to SNPs identified in isoniazid resistant clinical isolates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app