Add like
Add dislike
Add to saved papers

Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight.

The occurrence of microplastics (MPs) as emerging contaminants in the environment may cause changes in water or sediment characteristics, and further affect their biogeochemical cycles. Thus, insights into the interactions between dissolved organic matter (DOM) and MPs are essential for the assessment of environmental impacts of MPs in ecosystems. Integrating spectroscopic methods with chemometric analyses, this work explored the chemical and microstructural changes of DOM-MP complex to reveal the mechanism of DOM-MP interaction at a molecular level. MPs were found to interact with the aromatic structure of DOM via π-π conjugation, then be entrapped in the DOM polymers by the carboxyl groups and C=O bonds, constituting a highly conjugated co-polymer with increased electron density. This induced the fluorescence intensity increase in DOM. The interaction affinity of DOM-MP was highly dependent on the MP size and solution pH. This work offers a new insight into the impact of MP discharge on environment and may provide an analytical framework for evaluating MP hetero-aggregation and the roles of MPs in the transportation of other contaminants. Furthermore, the integrated methods used in this work exhibit potential applications in exploring the fragmentation processes of MPs and formation of secondary MPs under natural conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app