Add like
Add dislike
Add to saved papers

T-2 toxin induces cytotoxicity and disrupts tight junction barrier in SerW3 cells.

T-2 toxin, which is produced in grain and grain products as a secondary metabolite by Fusarium species, is also potentially dangerous for human health. Up to date, no study was reported the cytotoxicity of T-2 toxin on SerW3 cells in the perspective of junctional barriers. This study focused on revealing the cytotoxic effects of T-2 on Sertoli cells associated with cell junctional barriers. In the present study, SerW3 cells were exposed to T-2 toxin at 12, 120 and 1200ng/ml doses for 24 and 48h. Cytotoxicity tests including cell viability (MTT), lactate dehydrogenase (LDH) cytotoxicity test and trypan blue exclusion assay were performed. Occludin, ZO-1, N-cadherin and β-catenin were immunolabelled, expressions of occludin and N-cadherin were determined by western blotting. SerW3 cell barrier integrity was measured by transepithelial electrical resistance (TEER). Cytotoxicity caused by T-2 toxin increased in a dose dependent manner, expressions of proteins and TEER measurement decreased. This study may underlie the early targets of T-2 toxin on SerW3 cells mimicking blood-testis barrier in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app