Add like
Add dislike
Add to saved papers

Identification of novel therapeutic target genes and pathway in pancreatic cancer by integrative analysis.

BACKGROUND: Gene alterations are crucial to the molecular pathogenesis of pancreatic cancer. The present study was designed to identify the potential candidate genes in the pancreatic carcinogenesis.

METHODS: Gene Expression Omnibus database (GEO) datasets of pancreatic cancer tissue were retrieval and the differentially expressed genes (DEGs) from individual microarray data were merged. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) networks, and gene coexpression analysis were performed.

RESULTS: Three GEO datasets, including 74 pancreatic cancer samples and 55 controls samples were selected. A total of 2325 DEGs were identified, including 1383 upregulated and 942 downregulated genes. The GO terms for molecular functions, biological processes, and cellular component were protein binding, small molecule metabolic process, and integral to membrane, respectively. The most significant pathway in KEGG analysis was metabolic pathways. PPI network analysis indicated that the significant hub genes including cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1), mitogen-activated protein kinase 3 (MAPK3), and phospholipase C, gamma 1 (PLCG1). Gene coexpression network analysis identified 4 major modules, and the potassium channel tetramerization domain containing 10 (KCTD10), kin of IRRE like (KIRREL), dipeptidyl-peptidase 10 (DPP10), and unc-80 homolog (UNC80) were the hub gene of each modules, respectively.

CONCLUSION: Our integrative analysis provides a comprehensive view of gene expression patterns associated with the pancreatic carcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app