Add like
Add dislike
Add to saved papers

Leptin induces ROS via NOX5 in healthy and neoplastic mammary epithelial cells.

Oncology Reports 2017 November
NADPH oxidase (NOX) complexes (a family of seven isoforms) drive cellular ROS production in patho-logical processes such as cancer. NOX-driven ROS production is involved in cell mechanisms from signalling to oxidative stress. Leptin, an adipokine overexpressed in obese patients, has been investigated in studies on breast carcinogenesis, but its effects on oxidative stress remain largely unexplored, especially in breast cancer. The study used three human mammary epithelial cell models presenting different neoplastic status (healthy primary HMECs, neoplastic MCF-7 cells and neoplastic MDA-MB-231 cells) to determine the effects of leptin on short-term ROS production and to characterize the enzymes involved. All three cell models significantly expressed NADPH oxidase isoform 5 (NOX5) in our culture conditions. All models showed induced ROS production regardless of leptin concentration (10 ng/ml mimicking good health, 100 ng/ml mimicking obesity). Cell treatment with either siRNA against NOX5, NOX inhibitor DPI or a calcium channel blocker (verapamil) confirmed the putative involvement of the NOX5 isoenzyme in ROS production. Moreover, cell treatments suppressed ROS production under leptin at both concentrations. Neoplastic cells appeared unable to downregulate NOX5 mRNA expression under leptin. Leptin emerged as a potential activator of ROS production in human epithelial mammary cells, where the ROS production was apparently linked to NOX5 activation. This novel finding could shed light on the potential role of obesity-associated hyperleptinemia in mammary cells via the activation of NOX enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app