EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Fidelity of RNA templated end-joining by chlorella virus DNA ligase and a novel iLock assay with improved direct RNA detection accuracy.

Nucleic Acids Research 2017 October 14
Ligation-based nucleic acid detection methods are primarily limited to DNA, since they exhibit poor performance on RNA. This is attributed to reduced end-joining efficiency and/or fidelity of ligases. Interestingly, chlorella virus DNA ligase (PBCV-1 DNA ligase) has recently been shown to possess high RNA-templated DNA end-joining activity; however, its fidelity has not yet been systematically evaluated. Herein, we characterized PBCV-1 ligase for its RNA-templated end-joining fidelity at single base mismatches in 3' and 5' DNA probe termini and found an overall limited end-joining fidelity. To improve the specificity in PBCV-1 ligase-driven RNA detection assays, we utilized structure-specific 5' exonucleolytic activity of Thermus aquaticus DNA polymerase, used in the invader assay. In the iLock (invader padLock) probe assay, padlock probe molecules are activated prior ligation thus the base at the probe ligation junction is read twice in order to aid successful DNA ligation: first, during structure-specific invader cleavage and then during sequence-specific DNA ligation. We report two distinct iLock probe activation mechanisms and systematically evaluate the assay specificity, including single nucleotide polymorphisms on RNA, mRNA and miRNA. We show significant increase in PBCV-1 ligation fidelity in the iLock probe assay configuration for RNA detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app