Add like
Add dislike
Add to saved papers

Rapid Screening of Active Components with an Osteoclastic Inhibitory Effect in Herba epimedii Using Quantitative Pattern-Activity Relationships Based on Joint-Action Models.

Screening of bioactive components is important for modernization and quality control of herbal medicines, while the traditional bioassay-guided phytochemical approach is time-consuming and laborious. The presented study proposes a strategy for rapid screening of active components from herbal medicines. As a case study, the quantitative pattern-activity relationship (QPAR) between compounds and the osteoclastic inhibitory effect of Herba epimedii , a widely used herbal medicine in China, were investigated based on joint models. For model construction, standard mixtures data showed that the joint-action models are better than the partial least-squares (PLS) model. Then, the Good2bad value, which could reflect components' importance based on Monte Carlo sampling, was coupled with the joint-action models for screening of active components. A compound (baohuoside I) and a component composed of compounds with retention times in the 6.9-7.9 min range were selected by our method. Their inhibition rates were higher than icariin, the key bioactive compound in Herba epimedii , which could inhibit osteoclast differentiation and bone resorption in a previous study. Meanwhile, the half-maximal effective concentration, namely, EC50 value of the selected component was 7.54 μg/mL, much smaller than that of baohuoside I-77 μg/mL-which indicated that there is synergistic action between compounds in the selected component. The results clearly show our proposed method is simple and effective in screening the most-bioactive components and compounds, as well as drug-lead components, from herbal medicines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app