Add like
Add dislike
Add to saved papers

Effects of Temperature and Concentration on the Rate of Photobleaching of Erythrosine in Water.

Erythrosine, a popular food dye, undergoes fast O2 -sensitive bleaching in water when subjected to visible light illumination. In dilute solution, erythrosine undergoes photobleaching via first-order kinetics, where the rate of bleaching depends critically on the rate of photon absorption and on the concentration of dissolved oxygen. Kinetic studies indicate that this inherent bleaching is augmented by self-catalysis at higher concentrations of erythrosine and on long exposure times. Under the conditions used, bleaching occurs by way of geminate attack of singlet molecular oxygen on the chromophore. Despite the complexity of the overall photobleaching process, the rate constants associated with both inherent and self-catalytic bleaching reactions follow Arrhenius-type behavior, allowing the activation parameters to be resolved. Bleaching remains reasonably efficient in the solid state, especially if the sample is damp, and provides a convenient means by which to construct a simple chemical actinometer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app