Add like
Add dislike
Add to saved papers

All-fiber multimode interferometer for the generation of a switchable multi-wavelength thulium-doped fiber laser.

Applied Optics 2017 July 21
A compact all-fiber multimode interferometer (MMI) designed to produce a switchable multi-wavelength thulium-doped fiber laser (TDFL) is proposed and demonstrated. The TDFL fiber ring cavity employs a 60-cm-long multimode fiber into the cavity to induce multimode interference and provide intensity-dependent loss in order to generate a multi-wavelength output. The suppression of mode competition and the overall stability of the TDFL are further improved by exploiting the filtering capability of a Sagnac loop. By increasing the pump power, a switchable wavelength output is allowed with a wavelength spacing of ∼1.8  nm. At 361 mW input pump power, nine laser lines are generated, with a maximum signal-to-noise ratio value of ∼36  dB and an output power of 3.3 mW. The multi-wavelength TDFL also exhibits great stability in one-hour operation with a wavelength drift of 0.2 nm. The proposed multi-wavelength TDFL has potential to be employed in future thulium-doped fiber amplifier-based telecommunication infrastructure and also may be applicable in areas such as sensing and spectroscopy, largely associated with its 2 μm wavelength output.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app