Add like
Add dislike
Add to saved papers

Infrared optical constants of liquid palm oil and palm oil biodiesel determined by the combined ellipsometry-transmission method.

Applied Optics 2017 June 21
The optical constants of vegetable oils and biodiesels are the basic input parameters in the study of the thermal radiation transfer and monitoring the productivity of vegetable oils converting to biodiesels. In this work, a combined ellipsometry-transmission method is presented to obtain the optical constants of palm oil and palm oil biodiesel between 20°C and 150°C in the spectral range 600-4100  cm-1 and to study the temperature effect on the optical constants. In the combined method, a modified ellipsometry method is used to measure the optical constants of palm oil and palm oil biodiesel for the whole researched wave bands. For the weak absorption regions in which the ellipsometry method cannot give precise absorption indices, the transmission method is conducted to get the absorption indices using the refractive indices obtained by the proposed ellipsometry method. Deionized water and methanol are taken as examples to verify the combined ellipsometry-transmission method. It is shown that the combined method can overcome the deficiencies of the traditional ellipsometry and transmission method, which can be used for the measurements of both strong and weak absorption wave bands. The experimental analyses indicate that temperature exerts a noticeable influence on the infrared optical constants of palm oil and palm oil biodiesel. With the increase of temperature, the refractive indices at certain wavenumbers decrease nearly linearly, and the amplitudes of dominant absorption peaks show a decreasing trend. The absorption peaks located around 3550  cm-1 show blueshift trends as temperature increases. Comparing these two kinds of oils, palm oil presents larger values in refractive indices and dominant absorption peaks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app