Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Three-dimensional duck's feet collagen/PLGA scaffold for chondrification: role of pore size and porosity.

An ideal tissue-engineered scaffold must provide sufficient porosity to allow free movement of cells, nutrients, and oxygen for proper cell growth and further maintenance. Owing to variation in pore sizes and shapes of as-fabricated scaffold, the amount of oxygen available for the cells attached to the scaffold and transfer of by-products and excrement will be different, which ultimately results in cell activity. Thus, optimizing pore size and porosity of a scaffold for a specific tissue regeneration are one of the key highlights, which should be considered while designing a scaffold as well as choosing a specific cell type. In this study, three-dimensional (3D) scaffolds based on blends of duck's feet collagen (DC) and poly (lactic-co-glycolic acid) (PLGA) with different pore sizes i.e. 90-180, 180-250, 250-355 and 355-425 μm were prepared using solvent casting/salt leaching approach and examined its effects on chondrification. The morphological analysis of the as-fabricated scaffolds was performed using SEM for studying porosity and pore size. The cell proliferation and gene expression were investigated after culturing costal chondrocytes on each scaffolds using 3-(4, 5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay and qRT-PCR. Histological staining of in vivo implants was performed in nude mice as models. The biological evaluation showed a pore-size dependent chondrification at different time points. Especially, the 355-425 μm DC/PLGA scaffold showed a highest positive impact on maintenance of cell proliferation, costal chondrocyte phenotype and increased glycosaminoglycan accumulation than the other groups. These results indicated that DC/PLGA scaffolds with pore size ranging from 250 to 425 μm can be considered as highly-suitable constructs for enhanced chondrification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app