Add like
Add dislike
Add to saved papers

Intrinsic physiology of inhibitory neurons changes over auditory development.

During auditory development, changes in membrane properties promote the ability of excitatory neurons in the brain stem to code aspects of sound, including the level and timing of a stimulus. Some of these changes coincide with hearing onset, suggesting that sound-driven neural activity produces developmental plasticity of ion channel expression. While it is known that the coding properties of excitatory neurons are modulated by inhibition in the mature system, it is unknown whether there are also developmental changes in the membrane properties of brain stem inhibitory neurons. We investigated the primary source of inhibition in the avian auditory brain stem, the superior olivary nucleus (SON). The present studies test the hypothesis that, as in excitatory neurons, the membrane properties of these inhibitory neurons change after hearing onset. We examined SON neurons at different stages of auditory development: embryonic days 14-16 (E14-E16), a time at which cochlear ganglion neurons are just beginning to respond to sound; later embryonic stages (E18-E19); and after hatching (P0-P2). We used in vitro whole cell patch electrophysiology to explore physiological changes in SON. Age-related changes were observed at the level of a single spike and in multispiking behavior. In particular, tonic behavior, measured as a neuron's ability to sustain tonic firing over a range of current steps, became more common later in development. Voltage-clamp recordings and biophysical models were employed to examine how age-related increases in ion currents enhance excitability in SON. Our findings suggest that concurrent increases in sodium and potassium currents underlie the emergence of tonic behavior. NEW & NOTEWORTHY This article is the first to examine heterogeneity of neuronal physiology in the inhibitory nucleus of the avian auditory system and demonstrate that tonic firing here emerges over development. By pairing computer simulations with physiological data, we show that increases in both sodium and potassium channels over development are necessary for the emergence of tonic firing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app