Add like
Add dislike
Add to saved papers

Capacitive deionization of a RO brackish water by AC/graphene composite electrodes.

Chemosphere 2018 January
A feasibility study for water recycling and reuse of a reverse osmosis (RO) brackish wastewater by capacitive deionization (CDI) was carried out in the present work. Palm-shell wastes enriched in carbon was recycled to yield valuable activated carbon (AC) that has advantages of high surface area, high specific capacitance, and low electrical resistance as the CDI electrodes. The GAC prepared by dispersion of AC in the graphene (rGO) layers has a high surface area and electrical conductivity for CDI. The GAC electrodes have increasing electrosorption efficiencies from 1.6 to 3.0% during the repeated electrosorption-regeneration cycles under +1.2 → 0 → +1.2 V while the efficiencies the AC electrodes decrease from 2.7 to 1.6%. It is clear that the GAC-based electrodes have a better electrosorption efficiency and stability in, for example, the three repeated electrosoption-regeneration cycles for CDI of the wastewater. This work also exemplifies that the AC recycled from biomass such as palm-shell wastes can be used in CDI electrodes for recycling and reuse of wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app