Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Fabrication and Use of Poly(d,l-lactide-co-glycolide)-Based Formulations Designed for Modified Release of 5-Fluorouracil.

5-fluorouracil (5-FU) is a chemotherapeutic agent that has been used for the treatment of a variety of malignancies since its initial introduction to the clinic in 1957. Owing to its short biological half-life, multiple dosings are generally required to maintain effective 5-FU plasma concentrations throughout the therapeutic period. Clinical studies have shown that continuous 5-FU administration is generally superior to bolus injection as exhibited by lower toxicities and increased therapeutic efficacy. Optimal therapeutic efficacy, however, is often compromised by the limiting therapeutic index. Whilst oral formulations are also used, these suffer from the drawbacks of variable bioavailability and first-pass metabolism. As a result, sustained release formulations of 5-FU have been investigated in an effort to mimic the kinetics of continuous infusion particularly for situations where local delivery is considered appropriate. The biocompatible, biodegradable, and highly tunable synthetic polymer, poly(d,l-lactide-co-glycolide) (PLGA), is widely used as a vector for sustained drug delivery, however, issues such as insufficient loading and inappropriate burst release kinetics have dogged progress into the clinic for small hydrophilic drugs such as 5-FU. This review provides introductory information about the mechanism of action, pharmacokinetic and physicochemical properties, and clinical use of 5-FU that have contributed to the development of PLGA-based 5-FU release platforms. In addition, this review provides information on fabrication methods used for a range of 5-FU-loaded PLGA formulations and discusses factors affecting the release kinetics of 5-FU as well as the in vitro and in vivo antitumor or antiproliferative efficacy of these platforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app