Add like
Add dislike
Add to saved papers

Development of Clickable Monophosphoryl Lipid A Derivatives toward Semisynthetic Conjugates with Tumor-Associated Carbohydrate Antigens.

A semisynthetic strategy to obtain monophosphoryl lipid A derivatives equipped with clickable (azide, alkyne, double bond, or thiol precursor) moieties, starting from the native lipid A isolated from Escherichia coli, is presented. These lipid A derivatives can be conjugated with other interesting biomolecules, such as tumor-associated carbohydrate antigens (TACAs). In this way, the immunostimulant activity of monophosphoryl lipid A can significantly improve the immunogenicity of TACAs, thus opening access to potential self-adjuvant anticancer vaccine candidates. A monophosphoryl lipid A-Thomson-Friedenreich (TF) antigen conjugate was obtained to demonstrate the feasibility of this methodology, which stands as a valuable, rapid, and scalable alternative to the highly complex approaches of total synthesis recently reported to the same aim. A preliminary evaluation of the immunological activity of this conjugate as well as of other semisynthetic lipid A derivatives was also reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app