Add like
Add dislike
Add to saved papers

Ultrahigh Vacuum Synthesis of Strain-Controlled Model Pt(111)-Shell Layers: Surface Strain and Oxygen Reduction Reaction Activity.

In this study, we perform ultrahigh vacuum (UHV) and arc-plasma synthesis of strain-controlled Pt(111) model shells on Pt-Co(111) layers with various atomic ratios of Pt/Co and an oxygen reduction reaction (ORR) activity enhancement trend against the surface strain induced by lattice mismatch between the Pt shell and Pt-Co alloy-core interface structures was observed. The results showed that the Pt(111)-shell with 2.0% compressive surface strain vs intrinsic Pt(111) lattice gave rise to a maximum activity enhancement, ca. 13-fold higher activity than that of clean Pt(111). This study clearly demonstrates that the UHV-synthesized, strain-controlled Pt shells furnish useful surface templates for electrocatalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app