Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sox2 Communicates with Tregs Through CCL1 to Promote the Stemness Property of Breast Cancer Cells.

Stem Cells 2017 December
As an important component of the tumor microenvironment, CD4+ CD25+ Tregs reduce antitumor immunity, promote angiogenesis and metastasis in breast cancer. However, their function in regulating the "stemness" of tumor cells and the communication between Tregs and cancer stem cells (CSCs) remain elusive. Here, we disclose that the primarily cultured Tregs isolated from breast-tumor-bearing Foxp3-EGFP mouse upregulate the stemness property of breast cancer cells. Tregs increased the side-population and the Aldehyde dehydrogenase-bright population of mouse breast cancer cells, promoted their sphere formation in a paracrine manner, and enhanced the expression of stemness genes, such as Sox2 and so forth. In addition, Tregs increased tumorigenesis, metastasis, and chemoresistance of breast cancer cells. Furthermore, Sox2-overexpression tumor cells activated NF-κB-CCL1 signaling to recruit Tregs through reducing the binding of H3K27Me3 on promoter regions of p65 and Ccl1. These findings reveal the functional interaction between Tregs and CSCs and indicate that targeting on the communication between them is a promising strategy in breast cancer therapy. Stem Cells 2017;35:2351-2365.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app