Add like
Add dislike
Add to saved papers

Targeted deep sequencing of effusion cytology samples is feasible, informs spatiotemporal tumor evolution, and has clinical and diagnostic utility.

During the course of disease, many cancer patients eventually present with metastatic disease including peritoneal or pleural spread. In this context, cytology specimens derived from ascites or pleural effusion may help to differentiate malignant from benign conditions and sometimes yield diagnosis of a malignancy. However, even when supported by immunohistochemistry, cytological interpretation can be challenging, especially if tumor cellularity is low. Here, we investigated whether targeted deep sequencing of formalin-fixed and paraffin embedded (FFPE) cytology specimens of cancer patients is feasible, and has diagnostic and clinical impact. To this end, a cohort of 20 matched pairs was compiled, each comprising a cytology sample (FFPE cell block) and at least one biopsy/surgical resection specimen serving as benchmark. In addition, 5 non-malignant effusions were sequenced serving as negative-controls. All samples yielded sufficient libraries and were successfully subjected to targeted sequencing employing a semiconductor based next-generation sequencing platform. Using gene panels of different size and composition, including the Oncomine Comprehensive Assay, for targeted sequencing, somatic mutations were detected in the tissue of all 20 cases. Of these, 15 (75%) harbored mutations that were also detected in the corresponding cytology samples. In four of these cases (20%), additional private mutations were detected in either cytology or tissue samples, reflecting spatiotemporal tumor evolution. Of the five remaining cases, three (15%) showed wild type alleles in cytology material whereas tumor tissue had mutations in interrogated genes. Two cases were discordant, showing different private mutations in the cytology and in the tissue sample, respectively. In summary, sequencing of cytology specimens (FFPE cell block) reflecting spatiotemporal tumor evolution is feasible and yields adjunct genetic information that may be exploitable for diagnostics and therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app