Add like
Add dislike
Add to saved papers

Rhodium-Induced Reversible C-C Bond Cleavage: Transformations of Rhodium(III) 22-Alkyl-m-benziporphyrins.

The structurally prearranged carbaporphyrins 22-methyl- and 22-ethyl-m-benziporphyrins provide the platform stabilizing aromatic rhodium(III) 22-(μ-methylene-m-benziporphyrin) and rhodium(III) 22-(μ-ethylidene-m-benziporphyrin). An intramolecular conversion facilitated by the m-phenylene reactivity and observed for both aromatic complexes efficiently leads to rhodium(III) 21-(μ-methylene)-21-carbaporphyrin and rhodium(III) 21-(μ-ethylidene)-21-carbaporphyrin. The distinctive macrocyclic environment of rhodium(III) 21-carbaporphyrin created an opportunity to trap unique organometallic transformations of inner core substituents affording the fulvene-like bond pattern or the rearrangement to 21-vinyl substituent. The one-electron reduction of the rhodium(III) carbaporphyrin anion π-radical with a (dxy )2 (dxz )2 (dyz )2 -(P.- ) electronic configuration is demonstrated. The further process of reduction of paramagnetic species triggers the ethyl migration from carbon(22) to rhodium(III), affording the diamagnetic rhodium(III) meta-benziporphyrin containing the apically coordinated σ-ethyl ligand providing an example of reversible C(sp2 )-C(sp3 ) bond cleavage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app