Add like
Add dislike
Add to saved papers

Effects of forced, passive, and voluntary exercise on spinal motoneurons changes after peripheral nerve injury.

After peripheral nerve injury, there are important changes at the spinal level that can lead to disorganization of the central circuitry and thus compromise functional recovery even if axons are able to successfully regenerate and reinnervate their target organs. Physical rehabilitation is a promising strategy to modulate these plastic changes and thus to improve functional recovery after the damage of the nervous system. Forced exercise in a treadmill is able to partially reverse the synaptic stripping and the loss of perineuronal nets that motoneurons suffer after peripheral nerve injury in animal models. The aim of this study was to investigate whether passive exercise, by means of cycling in a motorized bicycle, or voluntary free running in a wheel is able to mimic the effects induced by forced exercise on the changes that axotomized motoneurons suffer after peripheral nerve injury. Partial preservation of synapses and perineuronal nets was observed only in axotomized motoneurons from animals subjected to high-intensity cycling and the ones that freely ran long distances, but not when low-intensity exercise protocols were applied. Therefore, the intensity but not the type of exercise used is the key element to prevent synaptic stripping and loss of perineuronal nets in motoneurons after axotomy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app